1986 15th International Conference on Paralle] Processing, August 19-22, 1986, St. Charles, Illinois,

USA

A PARALLEL RANGE SEARCH ALGORITHM USING
MULTIPLE ATTRIBUTE TREE

S.V. Nageswara Rao, S.S. Iyengar

Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803, USA

ABSTRACT

The problem of range search arises in many applications
in areas such as information retreval, database, robotics and
computational geometry. There are a good number of sequen-
tial algorithms for this problem based on data structures such
as k-d tree, quad tree, range tree, d-foid tree, super B-tree,
overlapping k-ranges, non-overlapping k-ranges, etc. In this
paper we present a parallel algorithm for a Single Instruction
Multiple Data (SIMD) computing system with p processing
clements. We make use of the linearized multiple attribute
tree as the underlying data structure. Our algorithm has the
complexity of O (kN/p), p<N where k is the dimensionality
and & is the number of points of the data space.

0. INTRODUCTION

The problem of range search arises in many application
areas such as information retrieval, database, robotics, and
computational geometry. There have been many sequential
algorithms for range search probiem using the data structures
such as k-d tree, quad tree, range tree, overlapping k-ranges,
nonoverlapping k-ranges, d-fold tree, super B-tree, k-fold tree,
and multiple attribute tree [1,3,5-7).

In this paper, we present a parallel algorithm for the
range search problem. We make use of the Multiple Attribute
Tree (MAT) as the underlying data structure. Our model of
computation is a Single Instruction Multiple Data (SIMD)
computing system, consisting of p processing elements. The
system has a single shared memory that supports simultaneous
reads. The time complexity of our algorithm is given by
ON/p),psN.

The organization of this paper is a5 follows: In Section 1,
we discuss the MAT data structure and the corresponding
directory. In Scction 2 the basic range search algorithm is dis-
cussed, and its complexity is estimated. Firstly an O (k) algo-
rithm is obtained using a processor array of size N in a
straight forward manner. Then, an O (kN /p), p<N algorithm
using a processor array of size p and an augmented directery.

RL. Kashkyap

Department of Electrical Engineering
Purdue University,
West lafayette IN 47907, USA

1. MULTIPLE ATTRIBUTE TREE AND LINEARIZA-
TION

The MAT data structure was first introduced and
analysed by Kashyap et al [2]. The MAT is shown to outper-
form the inverted file structure for partial match and complete
match queries in the cases when the directory resides on the
main and secondary memories in [4). An exhaustive treat-
ment on various structural aspects of MAT can be found in
[5].

The k-dimensional MAT on k attributes A,,A5,...,A; for
a set of records is defined as a tree of depth k, with the follow-
ing properties [4]:

i) it hasaroot atlevel 0,

i) each child of the root is a (k-1)-dimensional MAT, on
(k-1) attributes, A 1A42,..., A, for the subset of the recorcs
that have the same A value. This value is the value of
the root of the corresponding (k-1)-dimensional MAT,
and

iii) the child nodes of the root are in the ascending order of
their values. This set of child nodes is called the flial-
set. O

From the above definition we note that there is a roo:
node at level 0, and it does not have any value. Every node of
level i,i=1,2,... k, corresponds to a value of the attribute A,
Fig 1(b) shows the MAT data structure for the sorted sci of
records of Fig.1(a). The attributes A}A,,..,4; form the
hierarchy of of levels 1 through k. The nodes of every filial-
set are ordered according to their values. Another important
property is that each record or point is represented by a unicue
path from the root to the corresponding terminal node. The
total number of nodes in the MAT is atmost &N for a given
data set containing N records or points.

The MAT is linearized and stored as a directory. We
make use of the breadth-first linearization in which the nodes
are stored in the order they are encountered when MAT iy
traversed in a breadth-first manner. The directory is an array
of M (SkN) directory elements and each directory elemen:
has the following fields:

8, L Ay A, Recorc
Pt

' | 3 3y !

! 2 ! 2 2

| ! . 1 3

! ! 2 (] 4

H 3 3 3 -]

! ! 3 L] €

! 2 S [] 7

2 3 s 1]

FIG. I{c) INPUT DATA FLE

FiG 1{b) MAT representation for dotc of FIG.1(o)

directory-element = record
value: 1.M;
first-child: 1.M;
last-child: 1.M;
end;

where the fields corresponding to a node T, at level J,
and numbered n are defined as follows:

value: the value of the node T';

first-child: node number of the first child of the child set
of thenode T;

last-child: node numbcr of the last child of the child set
of the .iode T

The idea of breadth-first linearization is illustrated in
Fig.2 and the correponding directory is shown in Fig.3. In the
first-child ficld of lcaf nodes contain the pointers to the
corresponding records. The time complexity of constructing
this directory using a uniprocessor system is O (N logN)
(including the time required to sort the records on all the attri-
butes) [5]. Here, we are concerned only with answering the
range query, assuming that the directory is available in
memory. This directory is utilised in the design of parallel
range search algorithms in the next section.

2. PARALLEL RANGE SEARCH ALGORITHM

k
A range query is given by O = ~g;, where g; specifies
i=1
the range [/;,h,] at the level i. In geometric terms a range
query specifies a rectilinearly oriented hyper rectangle in k
dimensional space. Answering a range query calls for the

/@g

I T
@"2 G)/ﬁ é" é° é'er é‘" mrs

FiG. 2 Breccth- first lineorization

retrieval of the points enclosed by the specified hyper rectan-
gle, and these points form a ’sub’ MAT, called the query
MAT (QMAT), on the original MAT. These nodes of the
QMAT are called the qualified nodes of MAT for the query
Q. Answering a range query involves identifying the nodes of
the QMAT on the MAT. Let R be the number of records con-
tained in the hyper rectangle. The number of the nodes of the
QMAT is no more than kR .

An algorithm for range query proceeds by descending
down the MAT level by level, starting from the first level. At
each level i, the child sets of qualified nodes of previous leve!
are scarched for the containment in the range [/;,k;]. The
algorithms is as follows:

algorithm RANGE-SEARCH(level,gnodes);
begin
1. tempset:= ¢;
2. for each n € gqnodes do
add to tempset all the child nodes of n that lie
in the range (et hiver)
4. iflevel <k
then RANGE-SEARCH(level+1,tempset)
else return the pointers given by the elements of tempset:
end

w

A

In the algorithm RANGE-SEARCH, at a level i, all the

nodes that satisfy the partial query f‘W/ are collected as
j=1

tempset. In the next level i +1, the chiljd nodes of these nodes
are tested for inclusion in the range [/;,1.h;,;). At the final
level, the pointers to the information about the records that
satisfy the given query are retrieved.

The MAT data structure has some inbuilt paralielism
with respect to answering a range query. The searching for
the qualified nodes can be simultaneously carried out on the

sub MATSs of the same level. Howcver, there seems to be a
stringent sequentiality in the way the attributes are processed

‘one after the other. Again, speaking in geometric terms, pro-

cessing of each atttribute reduces the dimensionality of the
search space by one. From the above discussion, we conclude
that O (%) is lower bound on the steps involved in answeriing .
range query on the MAT-based approach.

No de -number Vole First—chig Lost-chig
I I 3 4
& 2 L} L}
3 I L] e
4 H ® 0
E] 3 L3/ 1
[2 e e
? 3 (2 14
8 4 I8 18
9 ! s X }
10 L} (R4 (R4
(3] 8 L] 19
12 [4 -
(5] 3 | -~
14 S [=
13 ! 2 -
16 2 2 -
17 [7 -
18 1 8 o
re 7 s -

FIG 3 Breadth- first airectory

The model of computation is in the form of an array of
processor elements PE;, j=1,2,.p, and operates in Single
Instruction and Multiple Data (SIMD) mode. More
specifically, each processor element executes the same algo-
rithm in synchronism with all the other processor elements.
We use single shared memory in which the breadth-first MAT
directory and other variables are stored. As will be shown
later there will be no conflicts in writing into the memory.
But, simultaneous read operations are supported. The range
query is represented by low-limit[i] and high-limit[/],
i=1,2,...k, which give the lower and upper limits of the range
for the attribute A;.

Firsly, consider the processor armay PE;, i=1,2,.N
where N is the number of records in input set. The array
base[i], i=1,2,...,(k+1) is stored in the memory, where any
node of level i lies in between the entries indexed by base[i],
and base[i+1]-1 in the directory. We use the array enable[i],
i=1,2,..N 10 selectively enable and disable the processor ele-
ments of the processor array. The algorithm consists of
steps and in step £, i=1,2,... .k the level i is processcd to obtain
the qualified nodes of the level i. Each enabled processing
clement acts on a child node of a qualified node at previous
level, and checks if the child node satisfies the range con-
staint of the current level. The processor elements
corresponding to the qualified nodes of current level arc
enabled in the next step. For the final level, the points that
satisfy the range query are obtained. The algorithm executed
by the processor clement PE;, j=1,2,.N for the step i,
i=1,2,...k is as follows:

algorithm FE:

begin
1. ifenable[/)
2. then
begin
3. enable[j] = false;
4. n =base[i] +j;
5. if low-limit[i] < value[k] < high-limit[/]
6. then
begin
7 for [= first-child[n] to last-child[n] do
8. enable[! - base[i]] = true;
end;
end;
end;

In the above algorithm the qualified records have 1o be
returned in the final level by suitably modifying the lines 7
and 8. This parallel algorithm implements the algorithm
RANGE-QUERY and it is very easily seen that this correctly
answers the range query. Since the algonithm is executed in &
synchronous steps, it is evident that the time complexity of
this algorithm is O (k).

In applications involving large amounts of data, the value
of N could be very large and the assumption of the array of N
processors is not very pragmatic. We now present an algo-
rithm that utilizes an armay PE;, i=12,.p, p<N processor
elements. The basic idea of ‘processing the MAT nodes level
by level’ is still followed: at any level the processor amy is
invoked required number of times along breadth of the MAT.
In this case the directory is augmented with two more fields - .
enable and level. The former is used to selectively enable and
disable the processor elements and latter field gives the Jevel
of the node. The global variable current-level gives the level-
number that is currently being processed, and it is incremented
after each level is processed. The array index[i], i=12,..p
gives the current index (into the directory) to be used by the
processor element PE;. Initially, the enable field is made true
for all the nodes of level 1 and also the entries of the array
index corresponding to the first level nodes are filled up. For
the final level, the qualified records are retrieved. The algo-
rithm executed by the processor element PE;, j=1,2,..p is as
follows:

The if statement in line 2 makes sure that all processors
of the SIMD array process the nodes of the current level.
After the first p nodes of a level are processed, the next p
nodes are processed by the use of the array index as in line 8.
The lines 6 and 7 are to be modified to retrieve the qualified
records in the final level. It is straight forward to see that the
range query is processed correctly.

algorithm PEj;
begin
L ! = index[/];

2, if ((current-level = level[/]) and (enable[l]))
3. then

begin
4. if (low-limit{current-level] < value[/]
< high-limit{current-level])
5 then
begin
6. for m = first-child(/] to last-child[/] do
7 enable[m] = true,
end
8. index[j] =I+p;
9. enable[/] = false;
end;
end,
THEOREM:

The time complexity of the paralle] range search algo-
rithm, on an SIMD processor array if P Processors is
OWKNIp).

PROOF: For the execution of the algorithm, at any level
i, the maximum number of times the processor array is
invoked is given by:

[(number of nodes of level i /p

Now, the total number of times the processor array is
invoked is given by

k
Y ((number of nodes of level i)/p])

i=1
= (il’ (number of nodes of level i])/p
i=1

=O(KN/p+k).

Hence, the time complexity of this algorithm is

O(N/p). O

We note that for the case p=N this algorithm has the
same complexity as the earlier one. But, earlier is superior as
it uses less memory space. We also note that the maximum
number of times the processor array is invoked is given by
k(Nip+1). This upperbound corresponds to the wosrt-case
structure of the MAT. In an average-case the number of times
that the processor array is invoked will be less than this
bound. The author are presently working on this aspect.

3. CONCLUSIONS

We have developed an O (kN/p) algorithm for range
search problem using the linearized MAT data structure and
SIMD computing system. Since the attributes are processed
one after the other, the MAT based parallel algorithm has a
lower bound complexity of Q(k) on the processor array con-
tainig no more than N processor clements. Here, we have

presented only the order estimates for the time complexity.
However, the exact upper bounds and the averzge-case
estimtes are needed to further substantiate the importance of
this method.

4. ACKNOWLEDGEMENTS

We thank the three anonymous referees for their valuable
comments which have certainly improved the presentation of
this paper.

5. REFERENCES

(11 BENTLEY,J.L, and FRIEDMAN, J.H., "Data structures
for range searching",ACM Computing Surveys, 11,
4(Dec. 1979), 397-409.

(2] KASHYAP, RL.. SUBAS, SK.C., and YAO, S.B,
"Analysis of multiattribute tree organization”, IEEE
Trans. Software Engineering, SE-2, 6(1977), 451-467.

[3] MEHLHORN, K., Data Structures and Algorithms 3:
Multidimensional Tree Structures and Computational
Geometry, EATCS monograph on Theoretical Computer
Science, Springer-verlag, 1984.

[4] NAGESWARA RAO, S.V.,, IYENGAR, S.S., and VENI
MADHAVAN, CE, "A comparative study of multiple
attribute tree and inverted file structures for large biblio-
graphic files", J. Information Processing and Manage-
ment,21, 5(1985), pp. 433-442.

[5] NAGESWARA RAO, S.V., and IYENGAR, S.S., The
Multiple Attribute Tree Structure, Tech. Report TRSS-
030,Dept. of Computer Science, Louisiana State Univer-
sity, Baton Rouge, USA, June 1985.

[6) OVERMARS, M.H,, The Design of Dynamic Da:a Struc-
tures, Lect. Notes in Comput. Sci. 156, Springer-verlag,
Berlin, 1984, :

[7] WILLARD, D.E, "New data structure for orthogonal
queries”, SIAM J. Computing, 14, 1(Feb. 1985), 232-
253.

	Image
	Image (2)
	Image (3)
	Image (4)

